
The Q*bird Level Designer:
User-assisted Procedural Level Design in Augmented Reality

Augmented reality (AR) gaming is becoming widely available
thanks to improvements in hand-held devices such as phones
and tablets. In this work, we describe our system for generating
levels for the AR game, Q*bird.

In Q*bird, the player must visit every cell in the level while
avoiding bees and cannon balls, similarly to the 1982 arcade
game, Q*bert. To create a new level, designers place game
elements using virtual cards. The system then generates the
remainder of the level, ensuring that it’s navigable. Designers
can edit these levels by dragging and dropping the created
geometry. To test, the designer can drop a character into the
level and play it. This system aids playtesting and level design
by allowing levels to be quickly specified and tested in the same
environment in which the game is played. Furthermore, this
system offers an example of how the design of AR levels can
also be performed in AR.

In this work, we created a system which combines direct editing
and evolutionary search. The resulting levels are organic and
visually appealing.

RESULTS FROM PRELIMINARY USER TESTING:
● Drag and drop of cards is intuitive
● AR controls initially unintuitive for some users who expected

touch-based mobile phone controls

FUTURE WORK:
● Study of character controllers in AR
● Study how level design affects game aesthetics, player

frustration, and player accomplishment
● Collaborative game design

GAME
OBJECTIVE

The player must
visit every block in

the terrain while
avoiding enemies.

Q*BERT-INSPIRED
ENEMIES

The bee and cannon
characters can push the
player off the platform.

ESCAPING FROM
ENEMIES

To help players
escape enemies when
cornered, single-use
hover disks can be
used to teleport to

safety.

1

2

3
4

EXPLORE
The user can quickly iterate through a series of visually distinct
levels that are procedurally generated based on the card
configuration.

PLACE CARDS
The user can specify the location of level components and
waypoints using virtual cards. To create a new level, designers
can drag and drop cards displayed below onto a surface. A level
can then be generated based on the card configuration.

TWEAK
The user can fine-tune levels by adjusting individual block
heights and virtual card positions.

BEE HOVER DISK CANNON WAYPOINT

ABSTRACT

INPUT: An arbitrary configuration
of level generation cards

OUTPUT: Two example procedurally
generated levels

TWEAK CARD POSITIONS: The example above demonstrates how the level
changes dynamically as the designer moves a card to the right.

TWEAK HEIGHTS: The example above demonstrates how the level
changes dynamically as the designer moves a block upwards.

The system maintains two representations of the level:
● A genome representation: A vector of integers which

controls how the level is generated
○ The integer vector consists of two parts: a PATH

GENOME (determines the order in which neighbors are
explored), a HEIGHT GENOME (determines the relative
heights between neighboring cells, either -1, 0, or 1)

● A phenotype representation: A 2D array of heights which
represents the genometry

HEIGHT DIFFERENCE (H): We measure the element-wise
difference heights of two levels.

The height change score between the two example levels presented above is three.

GRAPH EDIT DISTANCE (GE): We measure the number of
operations required to transform one graph into the other.

In the example above, we have to perform seven edge deletions and three vertex
deletions. Therefore, the GED between the two graphs is ten.

DIFFERENCE IN PERCENTAGE OF EMPTY SPACE (E): We find
the difference in the percentage of empty cells between two
levels.

Assuming we map to a 3-by-3 2D grid, approximately 66% of the cells are empty in the
example above.

We use evolutionary search to ensure the system shows visually
distinct examples (e.g. maximize difference) in EXPLORE and to
minimize the difference between the shared regions in TWEAK
(e.g. minimize difference when moving cards).

In our case, the genotype is our integer vector and the
phenotype is the output platform level geometry. We introduce
mutations to the genotype by changing the visiting order
encoded in the PATH GENOME or editing the relative heights
encoded by the HEIGHT GENOME. The equations representing
quantifying visual difference for the EXPLORE and TWEAK
operations are as follows:

EVOLUTIONARY SEARCH:
Generating levels randomly can result in many similar-looking
levels. We are able to guarantee a higher degree of visual
difference between levels in EXPLORE by applying evolutionary
search.

Three consecutively generated levels
with evolutionary search applied.

CONVERGENCE:
Our fitness objective for both EXPLORE and TWEAK achieve
convergence.

Here, we show the convergence of
the fitness objective for EXPLORE
(top) and TWEAK (bottom). In both,
we generate 50 random levels of
5-by-5 cells, initialized using 2
platform cards. For EXPLORE, our
system maximizes visual novelty.
For TWEAK, we allow our users to
make edits to the card positions
while minimizing the difference
between the remaining parts of the
level. Each line represents a
randomly picked example. The
fitness (Y-axis) of the population
improves with the number of
generations (X-axis). When
exploring, we cap the search
generations at 10 and for moving
cards, we cap the search
generation at 15.

RUNTIME:
● EXPLORE: 1s for a 5-by-5 grid, 4s for 10-by-10
● TWEAK CARD POSITION: 1s for 5-by-5, 5s for 10-by-10
● TWEAK HEIGHT: 0.2s for 5-by-5, 1.5s for 10-by-10

The image on the left is a photograph of a user using the Q*bird level designer. The
four photographs on the right are few sample levels created with our system.

Aline NormoyleYi Fei Cheng

Department of Computer Science, Swarthmore College

Q*BIRD: THE GAME

Q*BIRD: THE LEVEL DESIGNER

METHOD: THE LEVEL
GENERATION ALGORITHM

ROLE OF THE LEVEL GENERATION CARDS:
Cards constrain the level generation in two ways:
● Cards can define WAYPOINTS: Guaranteed level platform

positions (the bee and waypoint cards)
● Cards can define OBSTACLES: Positions the level platform

cannot occupy (the hover disk and cannon cards)
The corresponding game element will be created in the cell the
card occupies.

2D GRID CALCULATION:
We fit a bounding box around the cards
placed by the user. The bounding box is then
subdivided into block-sized cells to produce
a 2D grid encompassing the cards.
Ultimately, we represent platform levels as
undirected graphs superimposed on this 2D
grid of cells. Each node of the graph will have
an associated height with it and will map to a
cell (row, column) in the 2D grid space.

A 2D grid mapped onto
a sample set of
waypoint cards.

FROM GENOME TO GEOMETRY:
We compute the graph from our cards
and integer vector using an algorithm
based on depth-first-search (DFS).

We first define an undirected graph
using the 2D grid space. We select a cell
containing a waypoint card as the
starting node. We then carve out a
subgraph by traversing between
waypoints using DFS, visiting nodes in
the order specified by the PATH
GENOME. Afterwards, we traverse the
subgraph using DFS again, setting the
height of each subsequent node using
the PATH GENOME. Lastly, We iterate
through each node in the subgraph to
place platform level blocks on top of the
play surface, producing the geometry.

The 2D grid space as
an undirected graph.

1 1 0

0 0

0 0

The resultant sub-graph. The
numbers represent the

heights of each cell.

7 3 0 ... 4

0 1 1 ... -1

PATH GENOME

HEIGHT GENOME

Integer vector
genome-guided DFS.

The output platform
level geometry.

● w₁, w₂, and w₃ are weights determined via trial and error.
● We quantify visual difference with the functions GE, H, and E
● GE measures the graph edit distance between a previous

level Lᵢ (or L) and the mutated level p.
● H measures the pairwise difference in height.
● E measures the difference in percentage of empty cells.
● For EXPLORE we compare p with N previous levels, while for

TWEAK we only compare p to one previous level L.

RESULTS

Three consecutively generated levels
without evolutionary search (random).

DISCUSSION & FUTURE WORK

SYSTEM USE:

METHOD: EVOLUTIONARY
SEARCH

ALGORITHM PSEUDOCODE:
procedure GenerateLevel (g,C)
inputs: Genome g, List of cards C
outputs: UndirectedGraph G
G = InitializeGraph(C);
W = ExtractWaypoints(C);
for i = 0; i < Length(W) - 1; i = i + 1 do

G = DFS_SetPath(g, C[i], C[i + 1], G);
end
G = DFS_SetHeights(g, G);
return G;

The main goal of the level designer is to help a user search the
large space of possible levels given a placement of cards.

Fitness for when evolutionary search is
applied versus random generation.

