
An authoring tool to provide group and crowd
animation using Natural Language scripts

Guido Mainardi
Pontifical Catholic University of Rio Grande do Sul

School of Technology, VHLab
Porto Alegre, Brazil

guido.mainardi@edu.pucrs.br

Vinı́cius Cassol
Pontifical Catholic University of Rio Grande do Sul

School of Technology, VHLab
Porto Alegre, Brazil

vjcassol@gmail.com.br

Soraia Raupp Musse
Pontifical Catholic University of Rio Grande do Sul

School of Technology, VHLab
Porto Alegre, Brazil

soraia.musse@pucrs.br

Aline Normoyle
Bryn Mawr College
Bryn Mawr, USA

anormoyle@brynmawr.edu

Norman Badler
University of Pennsylvania

Philadelphia, USA
badler@seas.upenn.edu

Abstract—Virtual environments have become ubiquitous, ex-
panding beyond games into the domains of architecture, engi-
neering, psychology, education, and archaeology. Furthermore,
virtual humans can further enhance these environments when
they provide compelling and coherent behaviors. In this paper,
we present a scripting language based on simple, plain English
commands. Our system assists people without game and ani-
mation expertise to populate large environments and complex
scenarios. To validate our approach, we develop a prototype using
Unreal Engine 4 and author a variety of indoor and outdoor
agent simulations. Furthermore, we test our prototype with both
experienced and inexperienced users, creating scenarios for a
residence, mall, psychology scenario, and archaeological site.

Index Terms—Crowd, authoring tools, virtual human anima-
tion

I. INTRODUCTION

One way anthropologists study the past is to re-imagine the
culture, customs, and rituals of ancient civilizations. Because
ancient civilizations have few lasting remains, researchers
construct theories about how people lived by synthesizing
diverse sources, such as written accounts, buried artifacts,
and even folklore. A helpful resource for analyzing such
theories is visualizing them using virtual environments [1].
For example, packing streets, corridors, and spaces with large
numbers of people can give insights into the circulation of
people through the site along with possible locations of doors.
While this is a specific motivation, in this paper we propose a
scripting language technique developed for generic purposes
and for people who may not have advanced programming and
computer animation skills.

Thanks to freely available game engines, such as Unreal
Engine, we now have tools that allow us to simulate places
and populations, with a certain realism. However, controlling
characters and groups using such tools is challenging. People
without animation, programming, and game expertise must
first learn how to use these tools in order to author simulations
themselves. Thus, we propose an interface, based on a natural
language scripting language, to facilitate the translation from
the desired scenario into a visual animation.

In this work, we abstract the world-building features in
Unreal Engine, so that people without animation/programming
skills can focus on creating scenarios. Using this system,
authors can define the roles and behaviors of different people,
small groups, and crowds. Our proposed approach uses a
scripting language to facilitate the process of creating hypothe-
ses and visualizing them through computer animation [1]. This
work presents a prototype that allows users to populate virtual
environments with different types of people and activities.
The prototype can interpret scripts (command sequence in
English) that describe the behaviors of characters as well
as conditional and temporal events. For example, a scenario
designer can define shopping and restaurant behaviors in a
mall as well as behaviors that determine how characters react
to a fire alarm. These features make it possible to describe
complex scenarios, where agents perform different behaviors,
in a faster, simpler, and easier way. Using this model, we
can define both the daily routines of ancient peoples as well
as behaviors tailored to specific events, such as those related
to ceremonies and rituals. The model has the potential to



streamline and facilitate the testing of several simulations for
the validation of anthropological (or other) hypotheses.

We organize the paper as follows: Section II describes
existing research into the use of scripts and frameworks for
controlling agents. Section III describes our method and our
script syntax. Section IV describes our results and simulated
scenarios. Finally, Section V provides final comments and lists
future work.

II. RELATED WORK

Previous research has studied the use of scripts for authoring
virtual human behaviors. Kallmann et al. [2] proposed a
system that allowed users to specify “plug-in” behaviors for
agents within a virtual environment. The plug-ins took the
form of scripts written in Python that referenced characters
and objects in a shared virtual environment. Using this system,
users could create and place characters and objects, trigger
object interactions, make perceptual queries, or trigger char-
acter animations and locomotion. Similar to their system, our
system loads agent behaviors like plugin-ins to an existing
virtual world; however, our system does not require Python
programming knowledge.

Musse and Thalmann [3] proposed a scripting system that
allowed users to describe the behavior of groups and individual
agents. Groups and agents could have different degrees of
autonomy, ranging from independent to fully controlled by
a script. Using this system, users had three ways to control
agents and groups: via scripted behaviors; via behavior rules
with events and reactions; and via the external control of
agents in real-time.

More recently, Trescak and Bogdanovych [4] described
their approach for creating more natural-looking behaviors by
integrating planning algorithms that achieve agent goals. This
research aims to simulate more realistic non-player characters
(NPCs) in video games.

Gao et. al. [5] proposed the use of virtual space ontologies
(a data model used to make inferences) to help application
designers, who are usually non-computer professionals, to
create scenarios with large numbers of agents. This work also
sought to improve the reusability of authored agents.

Scripts are a common technique for creating and controlling
agents across many domains, such as simple simulations,
educational applications, and multimedia presentations. Vosi-
nakis and Panayiotopoulos [6] described their SimHuman
system, which provided a programming library and utilities
for making virtual worlds populated with agents. Within e-
Learning, Adamo-Villani et. al. [7] used text-based scripts to
create a virtual instructor-avatar that interacted with students.

This work is inspired by the work of Chow et al. [1] which
describes the need for parameterizable and easily customizable
virtual environments to test hypotheses about how people
may have used ancient anthropological sites. Furthermore, the
ability to create different simulations of virtual humans must
be easy and straight-forward, as most anthropologists do not
have animation and 3D programming experience.

III. METHOD

We develop a proof of concept using Unreal Engine. In our
approach, an experienced designer must set up the characters
and environment needed for the scenario beforehand so that a
potentially inexperienced user can refer to these scene objects
in their scripts. Our system re-uses Unreal Engine’s features
for path planning, rendering, and character animation to set
up an application.

First, an experienced designer annotates the environment
with bounding boxes, called RegionBoxs in our system, that
associate parts of the environment with labels that the script
can reference. For example, a RegionBox might be labeled with
“kitchen” or “temple”. Second, this designer would import any
character models and animations needed by the application so
they can be associated with different Agent types that the script
can reference.

Our prototype both creates and controls agents for the user,
so users do not need to be aware of the internal technical de-
tails of Unreal Engine. We use the two main callback methods
in Unreal to implement our script commands, BeginPlay and
Tick. BeginPlay executes when the simulation starts. During
BeginPlay, our system loads and places the characters who
will participate in the simulation. Tick executes once per frame
(e.g. in a loop). During Tick, our system updates the positions
and current activities of the characters.

Our prototype implements a CrowdController class that
manages all the characters in the application based on the
user’s scripts. The CrowdController performs “Scripts initial-
ization” in BeginPlay and the main “Execution loop” in Tick.

The CrowdController uses the engine’s navmesh features to
represent the areas of the map where characters have access.
Locations on the navmesh serve as objectives for agents and
indicate which parts of the map agents can use for navigation.
Although our scripting system could use the built-in navigation
and collision avoidance features in Unreal, our implementation
uses Biocrowds [8] to simulate agents, because of Biocrowd’s
features for simulating crowds with varying densities.

Writing and executing scripts are described in the following
three phases. Figure 1 illustrates each phase using different
colors:

1) Script authoring: Outside of the application, the user
describes the agents to spawn as well as their desired
behaviors (green boxes in Figure 1).

2) Script initialization: When the application starts (e.g. in
BeginPlay), our system generates agents in their initial
positions and states. (orange boxes in Figure 1).

3) Execution loop: Each frame (e.g. in Tick), the applica-
tion checks for event conditions, assigns behaviors to
agents, and updates the positions of agents in transit
(blue and red boxes in Figure 1).

We describe each phase in the following sections.

A. Script Authoring
Our prototype takes two or more scripts, in text format, as

input (green boxes in Figure 1). The user must provide two
types of scripts: a main script and a behavioral script.



Fig. 1. Model developed.

1) Main Script: The main script creates agents, designates
behaviors for them, and defines temporal and conditional
events. Temporal events are triggered at a given time. Con-
ditional events are triggered based on the locations of agents.
All event-based behaviors replace an agent’s current behavior.
For example, if the user defines a temporal event behavior at
time t, the agent will abort its current behavior and switch to
the new one. The main script supports four commands:

• Create: This command spawns a given number of agents
at a given location and corresponding to a given profile
and (optional) model. A profile is an agent type defined
by the user. Profiles typically refer to an agent role, such
as “Guard” or “Resident”. A model corresponds to a mesh
and animations. The designer sets up the model along
with the environment as part of the Unreal application.
The basic command structure is:

“Create <Number> <Profile> in <Place>”

The above command will create “Number” agents with
the “Profile” at the location “Place”. Locations are ex-
plained in Sections IV-A and IV-C. Above, no model is
specified so agents are created with the default model.

To specify an alternate model, the user uses the “as”
keyword.

“Create <Number> <Profile> as <Model> in <Place>”

• When:
This command defines a conditional event that triggers
when an agent belonging to a given profile goes to
the given location. This command follows the following
structure:

“When <Profile> in <Place> <Command>”

Above, when an agent of type “Profile” goes to “Place”,
the “Command” (event) will trigger.

• Profile ID:
This command defines a temporal event that triggers
for a specific agent belonging to a given profile. Agent
identifiers are positive integers, assigned at creation. The
first agent has “ID” 1, the second has “ID” 2, and so on
successively. The command structure is:

“<Profile> <ID> time <t> run/loop <Script>”



When the simulation time “t” is reached, the agent with
profile “Profile” and identifier “ID” will start the behavior
described in the “Script”. There are two options for this
command: “run” and “loop”. The first option executes the
given Script once. The second option repeats the given
Script, until it is interrupted or the program is terminated.

• All Profile:
This command defines a temporal event that triggers for
all agents of a given profile. The command structure is:

“All <Profile> time <t> run/loop <Script>”

When the simulation time “t” is reached, all agents with
profile “Profile” will start the behavior described in the
“Script”.

2) Behavior: Behavior scripts define simple instructions
that control an agent. For example, behavior scripts command
an agent to go to a given location or run a given animation.
Behavior scripts do not reference time. The instructions hap-
pen in sequence until there are no more instructions or the
system assigns a new behavior to the agent. Behavior scripts
currently support two command types:

1) Go to: Instructs an agent to navigate to a location in the
environment. Locations are specified using RegionBoxs
that are pre-configured in the application. Its structure
is:

“go to <Place>”

The agent that is following this behavior goes to a
random point inside the RegionBox named “Place”.

2) Play: This command causes the agent to perform an ani-
mation. Animations are pre-configured in the application
as part of the character model. Its structure is:

“play <Animation>”

The agent executing this behavior will play the anima-
tion with the name “Animation”.

B. Script initialization

The initialization step loads the information necessary to
run a scenario. The initialization step takes place in BeginPlay
and is represented by the orange boxes in Figure 1. This step
loads and parses the main and behavior scripts (Section III-A).
Then, this step checks that no script references any 3D models,
animations, or locations (e.g. RegionBoxs) that are not present
in the Unreal application. Finally, this step initializes all the
agents, with their respective 3D models, placing them at their
point of origin (a RegionBox referenced by the script) and
initializes all events that can be triggered when an agent goes
to a specific RegionBox.

C. Execution loop

During each simulation tick (frame), our prototype updates
the positions and behaviors of each agent. The system assigns
behaviors based on any events specified in the main script
(blue box in Figure 1) or based on behavior scripts (red box
in Figure 1). If an agent is currently executing a behavior
and an event triggers, the event behavior replaces the existing
one. When executing a behavior script, agents complete each
command in order. Commands may change the position and
animation of the agent. If a script does not loop, the agent
remains stationary until a new behavior is assigned to it.

IV. RESULTS

We developed a prototype in Unreal that allows the user to
control the behaviors of large numbers of agents. We present
the following scenarios to demonstrate the features of the
system:

1) Region Annotation Example: In Section IV-A we ex-
plain how to prepare a scenario so that agents can be
controlled using our scripting system.

2) Residence Example: In Section IV-B we describe a
simple scenario consisting of one agent living in a house.

3) Mall Example: Section IV-C describes a complex sce-
nario, with many agents in a fire simulation, in a mall.

4) Authoring evaluation: Section IV-D describes the expe-
riences of two authors using the system. One, who is an
expert in simulating agents, and one, who is a novice
but with a background in psychology.

A. Region Annotation Example

Our scripting system requires the environment and charac-
ters to be pre-configured. To demonstrate this configuration,
we develop a scenario based on a residence, containing a
bedroom, bathroom, kitchen, and living room (shorted to
”room”). The residence model was inspired by the floor plan of
Figure 2. The environment designer annotates different regions
of interest using invisible bounds objects, called RegionBoxs.
Script writers refer to the names of different region boxes
in order to spawn agents or specify goals for path planning.
Figure 4 illustrates the scenario of Figure 2 recreated in Unreal
and showing each RegionBox with its name.

B. Residence Example

We developed a simple scenario using the environment setup
in section IV-A. In this scenario, a single agent walks between
rooms. Rooms are marked in green in (Figure 4) and references
to each room are highlighted in yellow in Figure 3. This
scenario uses two scripts. The main script (green underline
on the left of Figure 3) creates one agent in the living room
(annotated as “Room”) and then specifies an event at time
3 seconds that triggers the GoTo behavior script. The GoTo
script has a blue underline on the right of Figure 3.

In Figure 4 you can see the agent waiting at its spawn
location, since it has not yet been assigned a behavior. After 3
seconds, the agent begins the GoTo behavior and starts walking
towards the kitchen (Figure 5). Once the agent reaches the



Fig. 2. Blueprint modeled in the example case.

Fig. 3. Scripts used in The Residence example.

kitchen, it switches to the next command in “GoTo.txt”, and
the agent begins walking towards the bathroom. After reaching
the bathroom, the agent returns to a waiting state. When going
to a location specified by a RegionBox, a random goal position
is chosen within the bounds of the box for the agent to walk
towards.

C. Mall Example

To demonstrate how our prototype supports authoring large
environments and crowds, we create a non-trivial mall scenario
Figure 9 shows the mall’s blueprint and Figure 7 shows the
corresponding model in Unreal.

We create a scenario consisting of shoppers, walkers, and
guards. At time 30 seconds, a guard triggers an alarm that
results in all characters evacuating the building (Figure 8).
This scenario demonstrates the following features:

• Animations: In the behavior script, “Buy.txt”, (Figure 11,
underlined in red) agents perform the a “thinking” an-
imation as they consider what they are going to buy.
Figure 11 shows a screenshot of this behavior.

• Agent models: In the main script (Figure 8, underlined
in pink) we load two non-default character models: the
“Macarena” and the “Highlight”. These models corre-
spond to characters with different behaviors.

Fig. 4. Agent Created in Room, in the Residence example.

Fig. 5. Agent walking to the Kitchen.

• Conditional Events: Unlike temporal events, which are
based on time, conditional events trigger based on
whether agents are located in a given area (Figure 8,
illustrated with a blue rectangle). In this scenario, agents
repeat the “fire” behavior when they are in the “MallOf-
fice”. Agents go to the “MallOffice” in response to a fire
alarm. Figure 14 shows a screenshot of agents executing
this behavior.

• Behavior profile: Different categories of agents are speci-
fied when they are created from the main script (Figure 8,
underlined in orange). These categories correspond to
a profile which can be referenced by subsequent com-



Fig. 6. Path to the bathroom. An arrow points from the character to a random
location.

Fig. 7. Mall, modeled in Unreal.

mands, using the keyword ”All”. For example, all agents
matching the “Buyer” profile executes the “Buy” behavior
(Figure 8, underlined in green). Similarly all agents
matching the “Guard” profile executes the conditional
event “Fire” (Figure 8, underlined in brown).

• Random: Agents goals can be chosen randomly from
all RegionBoxs having the same name. For example, in
Figure 11, shoppers choose random store locations. Users
can alternatively set flags to indicate sets of random loca-
tions. For example, the flag “Public” indicates all public
spaces available for walking (Figure 8, see “Walk.txt”).

Fig. 8. Main script for the mall scenario.

Fig. 9. Mall Blueprint

Fig. 10. Guard script for the mall scenario.



Fig. 11. Walk script for the mall scenario.

Fig. 12. Fire evacuation scripts for the mall scenario.

Fig. 13. Agent behaviors in the mall scenario. In the bottom left, one agent
runs the “thinking” animation.

Fig. 14. Agent behaviors in the mall scenario. Agents execute conditional
events to implement a fire evacuation.

D. Authoring Evaluation
To evaluate our approach, we performed guided sessions

where we asked potential users to create scenarios using our

prototype. We performed two distinct rounds of testing: in
the first one, we invited a specialist in computer animation
and simulation to give technical feedback; in the second one,
we invited a psychology student who did not have computer
animation expertise or technical programming knowledge, but
was interested in human behavior simulation.

During the test sessions, users were asked to learn the
different script commands so they could perform a list of tasks
using the prototype. The tasks were performed within the mall
model presented in the Section IV-C and are listed below:

1) Create an agent with the model “Highlight” in a random
”Store”.

2) Create an agent with the model “Macarena” in “Hall-
way4” that sits all the time (using the animation of
“MacarenaSitting”).

3) Create 10 agents that walk the halls endlessly.
4) Create 10 buyers with the “Macarena” template who

walk from store to store by running the “Macarena-
Thinking” animation when they arrive at each store.
When one of the buyers goes to the “AlecrimCroche”
store, all the buyers must leave the mall.

5) Add any new animation and create a script that uses it.
6) Create a simulation where several people are waiting

outside the mall. When a guard enters the mall, all
waiting people must go to the stores in the mall and
move between them.

E. Expert user feedback

The expert user initially found the system difficult to learn,
until he understood how the scripts and behavior profiles
worked. After the first moment of learning, he was able
to create different scenarios with the agents within the test
scenario.

The expert user reported that the prototype made it possible
to define simple agent behaviors quickly and that the prototype
was practical for scenario development. The prototype speeds
up the process of changing information to carry out new tests
in the same scenario. When you have several agents running
randomly, the gain of time using scripts, instead of the engine
itself, is not very significant, but when they start to create more
specific situations, such as conditional events or agents being
created in specific places, the scripts can save a great deal of
time.

F. Novice user feedback

The second session tested the system with a user having no
technical skills over the Zoom platform. A Psychology student
interested in virtually reproduce and observe human behavior
was briefly introduced (during approximately 30 minutes) to
the system. Then, she started to follow the test script described
in section IV-D. It is important to mention that the authoring
prototype needs to be set up by an Unreal experienced user,
and then the animation authoring can be done by a non-expert
modeler. In our tests, the environment was prepared and then
we give the computer controls (mouse and keyboard) to the
student, over the Zoom platform. During the introduction, the



authors showed the student how to run the simulation in Unreal
and how to edit the scripts.

The student was able to successfully perform the requested
tasks and was able to create and link scripts. In a follow-up
task, the student was asked to produce a new scenario related
to psychology and using the 3D mall scenario. In this scenario,
the student was asked to create two independent groups, with
10 agents each, and control their motion so they travel to
a specific point of the mall (the room Jeronimo, illustrated
in Figure 16). One group was composed of sad people; the
other of happy people. After the groups meet at Jeronimo,
the agents switch to new behaviors that lead them out of the
mall, e.g. MainEntry for the sad agents and EmergencyExit
for the happy agents. The happy agents used the “Macarena”
character model and the sad agents used the default Unreal
model.

In summary, the Psychology student was able to success-
fully author two scenarios. They were able to create groups as
well as control their motion and animation. The student was
able to create all the test scenarios in 1 and a half hours, which
included the initial presentation time. The scripts created by
the student can be seen in Figure 15 and Figure 16. According
to the scripts the simulation was structured as follows:

1) Ten agents defined as happy were created on random
positions in the scene and defined with the model
Macarena;

2) Ten agents defined as sad were created in random
positions in the scene (the default unreal human model
was applied here);

3) More 10 agents (using Macarena model) were randomly
created into the stores in order to represent other mall
customers;

4) Both happy and sad group were requested to follow
the walk script and move to Jeronimo Store after their
creation.

5) On time 30, all the agents were requested to leave the
mall, but sad people used the Main Entry Region while
happy people used the EmergencyExit Region.

After the test session, we interviewed the student. She
reported feeling secure and able to create simulations even
without a technical background. In addition, she highlighted
how easy it was to provide an animation with groups of
characters. She believes that tools, such as the presented in
this paper, can contribute to research in other areas, such as
her field of psychology, where the user could simulate and
visualize hypotheses in the early stages of research.

The student also reported areas where the system could be
made easier to use. In particular, she recommended we use
non-technical terms for keywords such as <loop>, and that
we allow the user to author all scripted behaviors in the same
file.

V. FINAL CONSIDERATIONS

In this work, we proposed an authoring tool that uses En-
glish Language scripts to control agents and virtual crowds in a
pre-mapped scenario. We believe proposing a natural language

Fig. 15. The scripts created by the Psychology student during our evaluation
of the prototype.

Fig. 16. Simulated environment with happy (2 pink agents on the right of
the image) and sad agents (white agents inside Jeronimo Store).

script to create scenarios in Unreal is our main contribution.
Furthermore, the ability to create scenarios using such scripts
is an important feature because it can allow non-graphics
experts – who do not have animation and game programming
knowledge – to do research involving the reproduction of
human behaviors in a virtual environment.

We developed a prototype and tested it with two users –
one an expert in computer animation and game programming
and one with a background in Psychology but no animation
and game expertise. Both were able to successfully create
scenarios using the system and both provided useful feedback
for improving the system further.

We also plan to improve the scripting system in the follow-
ing ways:

• When agent meets: This command would trigger a be-
havior when one agent comes across another agent of a



given profile. Its structure would be:

“When <Profile1> meets <Profile2> <Command>”

So, when an agent of profile “Profile1” gets close to an
agent of profile “Profile2” it triggers the command.

A. Future Work

We identify two distinct, and important, paths for future
work: the technical development side and the application side.

On the technical development side, we intend to make
technical improvements and perform an in-depth validation,
comparing our method against other state-of-the-art authoring
tools and popular behavior authoring approaches, such as
behavior trees. Our other goal is to make stand-alone versions
of our prototype applications, so a user can test the system
without installing Unreal. This will make obtaining feedback
faster and easier. We are also considering features that would
allow users to add their models and animations to an existing
scenario without Unreal.

On the application side, we intend to integrate our system
with an existing scenario based on the ancient pilgrimage site
of Pachacamac [1]. In this context, our scripting system would
be tested with archeologists to test hypotheses about how the
site was used via visual simulations of large numbers of agents.
This work is already in progress: Figures 17 shows a temple
configured with RegionBoxs and 18 shows characters that are
controlled using the scripting system described in this paper.

Fig. 17. Pachacamac environment and specified locations.

ACKNOWLEDGMENT

The authors would like to thank Luise Lindemann Kunzler
for her help in testing our platform. Also, thank to CNPq and
CAPES for partially funding this work.

REFERENCES

[1] K. Chow, A. Normoyle, J. Nicewinter, C. L. Erickson, and N. I. Badler,
“Crowd and procession hypothesis testing for large-scale archaeological
sites,” in 2019 IEEE International Conference on Artificial Intelligence
and Virtual Reality (AIVR), 2019, pp. 298–2983.

[2] M. Kallmann, J.-S. Monzani, A. Caicedo, and D. Thalmann, “Ace: A plat-
form for the real time simulation of virtual human agents,” in Computer
Animation and Simulation 2000, N. Magnenat-Thalmann, D. Thalmann,
and B. Arnaldi, Eds. Vienna: Springer Vienna, 2000, pp. 73–84.

Fig. 18. Character evolving in the environment.

[3] S. R. Musse and D. Thalmann, “Hierarchical model for real time
simulation of virtual human crowds,” IEEE Transactions on Visualization
and Computer Graphics, vol. 7, no. 2, pp. 152–164, 2001.

[4] T. Trescak and A. Bogdanovych, “Simulating complex social behaviours
of virtual agents through case-based planning,” Computers & Graphics,
vol. 77, pp. 122 – 139, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0097849318301596

[5] Z. Gao, L. Ren, Y. Qu, and T. Ishida, “Virtual space ontologies for
scripting agents,” in Massively Multi-Agent Systems I, T. Ishida, L. Gasser,
and H. Nakashima, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 70–85.

[6] S. Vosinakis and T. Panayiotopoulos, “A tool for constructing 3d
environments with virtual agents,” Multimedia Tools and Applications,
vol. 25, no. 2, pp. 253–279, Feb 2005. [Online]. Available:
https://doi.org/10.1007/s11042-005-5607-y

[7] N. Adamo-Villani, J. Cui, and V. Popescu, “Scripted animation to-
wards scalable content creation for elearning—a quality analysis,” in E-
Learning, E-Education, and Online Training, G. Vincenti, A. Bucciero,
and C. Vaz de Carvalho, Eds. Cham: Springer International Publishing,
2014, pp. 1–9.

[8] A. de Lima Bicho, R. A. Rodrigues, S. R. Musse, C. R. Jung,
M. Paravisi, and L. P. Magalhães, “Simulating crowds based on a
space colonization algorithm,” Computers & Graphics, vol. 36, no. 2,
pp. 70 – 79, 2012, virtual Reality in Brazil 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849311001713

http://www.sciencedirect.com/science/article/pii/S0097849318301596
http://www.sciencedirect.com/science/article/pii/S0097849318301596
https://doi.org/10.1007/s11042-005-5607-y
http://www.sciencedirect.com/science/article/pii/S0097849311001713

	Introduction
	related work
	Method
	Script Authoring
	Main Script
	Behavior

	Script initialization
	Execution loop

	Results
	Region Annotation Example
	Residence Example
	Mall Example
	Authoring Evaluation
	Expert user feedback
	Novice user feedback

	Final Considerations
	Future Work

	References

