The Q*bird Level Designer: User-assisted procedural level
design in augmented reality

Yi Fei Cheng

Swarthmore College

Level Components:

Aline Normoyle

Swarthmore College

Figure 1: The Q*bird Level Designer. Left to right: Using the designer on a phone. Screenshot of the design tool. The buttons
on the left serve as a pallet for available cards. The yellow handles show the locations of generated content on top of cards.

Screenshots of different levels created with our system.

ABSTRACT

Augmented reality (AR) gaming is becoming widely available thanks
to improvements in hand-held devices such as phones and tablets.
In this work, we describe our system for generating levels for the
AR game, Q*bird. In Q*bird, the player must visit every cell in the
level while avoiding bees and cannon balls, similarly to the 1982
arcade game, Q”bert. To create a new level, designers place game
elements using virtual cards. The system then generates the re-
mainder of the level, ensuring that it’s navigable. Designers can
edit these levels by dragging and dropping the created geometry.
To test, the designer can drop a character into the level and play it.
This system aids playtesting and level design by allowing levels to
be quickly specified and tested in the same environment in which
the game is played. Furthermore, this system offers an example of
how the design of AR levels can also be performed in AR.

CCS CONCEPTS

+ Computing methodologies — Mixed / augmented reality;
Human-centered computing — User interface design.

KEYWORDS

augmented reality, procedural content generation, level design,
user-assisted design tools

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6994-7/19/10.

https://doi.org/10.1145/3359566.3364686

ACM Reference Format:

Yi Fei Cheng and Aline Normoyle. 2019. The Q*bird Level Designer: User-
assisted procedural level design in augmented reality. In Motion, Interaction
and Games (MIG ’19), October 28-30, 2019, Newcastle upon Tyne, United King-
dom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3359566.
3364686

1 INTRODUCTION

Augmented reality (AR) gaming is becoming widely available thanks
to improvements in hand-held devices such as phones and tablets.
In this work, we describe our system for generating levels for the AR
game, Q*bird (Figure 1). The goal of this system is to make the pro-
cess of generating and evaluating AR levels easier and faster. Level
design is an iterative process, where the quality and enjoyment of
a level can only be assessed by playtesting. Thus, level design is
time-consuming. Playtesters must repeatedly play through a level
to identify problem areas. Furthermore, AR games are typically
created using a desktop development environment. Thus, the envi-
ronment where the level was designed may not match the hardware
or environment where it is played. This system offers an example
of how the design of AR levels can also be performed in AR.

Q*bird is inspired by the 1982 arcade game Q*bert. In Q*bert, the
player must visit every block in a pyramid while avoiding enemies.
While the original Q*bert levels were a pyramid of stacked blocks,
Q*bird can have an arbitrary terrain of blocks. Q*bird supports
Q*bert-inspired enemies — a bee and a cannon — which can push the
player off the platform. To help players escape enemies if cornered,
single-use hover disks can be used to escape. The player wins by
visiting every block and loses by falling off the level.

To create a new level from scratch, designers drag and drop
virtual cards representing game elements onto a surface, such as
a table. Our system then generates a navigable level based on the
given cards. This approach is inspired by the use of paper for proto-
typing game designs [Schell 2014]. Our system supports cards for


https://doi.org/10.1145/3359566.3364686
https://doi.org/10.1145/3359566.3364686
https://doi.org/10.1145/3359566.3364686

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

Figure 2: Level representation. The navigable space is repre-
sented as a graph (left). Each node has a height associated
with it and maps to a cell (row, column) in a 2D grid.

representing waypoints, bees, cannons, and hover disks. Typically,
many different levels are valid for a set of cards. To help designers
explore different possibilities, the system offers an explore mode
which generates a series of visually different options. For small edits
to an existing level, the system offers a tweak mode. In tweak mode,
the designer can move cards and change block heights by clicking
and dragging them. The relationship between the virtual objects,
the real world, and the game are one-to-one. No special camera
controls are needed: the user walks around the object to see it from
the other side as if looking at a hidden objects through a window.
Once happy with a configuration, the designer can enter play mode
to drop a character and test the game mechanics. Generating a level
for playtesting can be completed in seconds.

Exploration and tweaking are implemented using an evolution-
ary algorithm to search the space of possible levels, inspired by
[Shaker et al. 2010]. Evolutionary algorithms are a popular tech-
nique in procedural content generation (PCG) because they place
few constraints on the representation of the level or the fitness
objective [Shaker et al. 2016]. Thus, they allow us to incorporate
the unique requirements of Q*bird into the generative process .
Furthermore, the stochastic nature of procedural algorithms can
produce innovative examples which the designer may not have
previously considered. Lastly, a human can influence the output
generated by a PCG algorithm [Secretan et al. 2011]. In our system,
when users edit the level directly through tweaking, the changes
are propagated forward into future searches.

2 EXPLORING AND TWEAKING LEVELS

The main goal of the level designer is to help a user search the
large space of possible levels given a placement of cards. Levels are
represented as graphs superimposed on a 2D grid of cells (Figure 2).
The system maintains two representations of the level. One is a
genome representation, which is used for evolutionary search. The
other is a 2D array of heights, which represents the geometry
(e.g. the phenotype in evolutionary search terminology). Given a
genome, the system generates a level using an algorithm based on
depth-first-search. Similarly, if the user edits the terrain’s height,
the system updates the genome so it stays consistent.

Users can iterate through a series of potential levels (explore),
or edit a level directly (tweak). When exploring, we found that
generating levels randomly can result in many similar-looking
levels. Therefore, when exploring, we use evolutionary search to
ensure the system shows visually distinct examples. We quantify

Yi Fei Cheng and Aline Normoyle

Fitness

T T T T
20 30 40 50

Number of Generations

Height & Graph Fitness
w
1

0 10 20 30 40 50
Number of Generations

Figure 3: Convergence. Top, in explore mode, our system
maximizes novelty. Bottom, in tweak mode, we allow users
to move cards while minimizing the difference between the
remaining parts of the level. Each line represents a com-
puted example. The fitness (Y axis) of the population im-
proves with the number of generations (X axis).

visual differences in terms of height changes, graph differences, and
quantities of empty space. To tweak a level, the system supports
moving cards and changing cell heights. When moving cards, we
use evolutionary search to minimize the difference between the
shared regions. When changing heights, we modify the heights on
the 3D map directly and update the genome.

3 RESULTS

We implemented our system on a Microsoft Surface Pro (Intel Core
i5, 2.50 GHz, 8 GB RAM) using the unity3D game engine and Vuforia.
In Figure 3, we show the convergence of the fitness objective for
explore mode (generating novel examples) and tweak mode (moving
cards). In both, we generate 50 random levels of size 5x5 cells,
initialized using 2 platform cards. Explore performs at 1 second
at 25 cells (5x5) to 4 seconds at 100 cells (10x10). Moving cards
performs at 1 second at 25 cells (5x5) to 5 seconds at 100 cells (10x10).
Changing heights performs at less than 0.2 seconds at 25 cells (5x5)
and less than 1.5 seconds at 100 (10x10). There is no relationship
between the number of generations needed to converge and the
size of the grid.

REFERENCES

Jesse Schell. 2014. The Art of Game Design: A book of lenses. AK Peters/CRC Press.

Jimmy Secretan, Nicholas Beato, David B D’Ambrosio, Adelein Rodriguez, Adam
Campbell, Jeremiah T Folsom-Kovarik, and Kenneth O Stanley. 2011. Picbreeder: A
case study in collaborative evolutionary exploration of design space. Evolutionary
Computation 19, 3 (2011), 373-403.

Noor Shaker, Julian Togelius, and Mark ] Nelson. 2016. Procedural content generation
in games. Springer.

Noor Shaker, Georgios Yannakakis, and Julian Togelius. 2010. Towards automatic
personalized content generation for platform games. In Sixth Artificial Intelligence
and Interactive Digital Entertainment Conference.



	Abstract
	1 Introduction
	2 Exploring and tweaking levels
	3 Results
	References

